1 // Written in the D programming language. 2 3 /** 4 This is a submodule of $(MREF std, math). 5 6 It contains several functions for work with floating point numbers. 7 8 Copyright: Copyright The D Language Foundation 2000 - 2011. 9 License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0). 10 Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston, 11 Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger 12 Source: $(PHOBOSSRC std/math/operations.d) 13 14 Macros: 15 TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> 16 <caption>Special Values</caption> 17 $0</table> 18 SVH = $(TR $(TH $1) $(TH $2)) 19 SV = $(TR $(TD $1) $(TD $2)) 20 NAN = $(RED NAN) 21 PLUSMN = ± 22 INFIN = ∞ 23 LT = < 24 GT = > 25 */ 26 27 module std.math.operations; 28 29 import std.traits : CommonType, isFloatingPoint, isIntegral, Unqual; 30 31 // Functions for NaN payloads 32 /* 33 * A 'payload' can be stored in the significand of a $(NAN). One bit is required 34 * to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits 35 * of payload for a float; 51 bits for a double; 62 bits for an 80-bit real; 36 * and 111 bits for a 128-bit quad. 37 */ 38 /** 39 * Create a quiet $(NAN), storing an integer inside the payload. 40 * 41 * For floats, the largest possible payload is 0x3F_FFFF. 42 * For doubles, it is 0x3_FFFF_FFFF_FFFF. 43 * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. 44 */ 45 real NaN(ulong payload) @trusted pure nothrow @nogc 46 { 47 import std.math.traits : floatTraits, RealFormat; 48 49 alias F = floatTraits!(real); 50 static if (F.realFormat == RealFormat.ieeeExtended || 51 F.realFormat == RealFormat.ieeeExtended53) 52 { 53 // real80 (in x86 real format, the implied bit is actually 54 // not implied but a real bit which is stored in the real) 55 ulong v = 3; // implied bit = 1, quiet bit = 1 56 } 57 else 58 { 59 ulong v = 1; // no implied bit. quiet bit = 1 60 } 61 if (__ctfe) 62 { 63 v = 1; // We use a double in CTFE. 64 assert(payload >>> 51 == 0, 65 "Cannot set more than 51 bits of NaN payload in CTFE."); 66 } 67 68 69 ulong a = payload; 70 71 // 22 Float bits 72 ulong w = a & 0x3F_FFFF; 73 a -= w; 74 75 v <<=22; 76 v |= w; 77 a >>=22; 78 79 // 29 Double bits 80 v <<=29; 81 w = a & 0xFFF_FFFF; 82 v |= w; 83 a -= w; 84 a >>=29; 85 86 if (__ctfe) 87 { 88 v |= 0x7FF0_0000_0000_0000; 89 return *cast(double*) &v; 90 } 91 else static if (F.realFormat == RealFormat.ieeeDouble) 92 { 93 v |= 0x7FF0_0000_0000_0000; 94 real x; 95 * cast(ulong *)(&x) = v; 96 return x; 97 } 98 else 99 { 100 v <<=11; 101 a &= 0x7FF; 102 v |= a; 103 real x = real.nan; 104 105 // Extended real bits 106 static if (F.realFormat == RealFormat.ieeeQuadruple) 107 { 108 v <<= 1; // there's no implicit bit 109 110 version (LittleEndian) 111 { 112 *cast(ulong*)(6+cast(ubyte*)(&x)) = v; 113 } 114 else 115 { 116 *cast(ulong*)(2+cast(ubyte*)(&x)) = v; 117 } 118 } 119 else 120 { 121 *cast(ulong *)(&x) = v; 122 } 123 return x; 124 } 125 } 126 127 /// 128 @safe @nogc pure nothrow unittest 129 { 130 import std.math.traits : isNaN; 131 132 real a = NaN(1_000_000); 133 assert(isNaN(a)); 134 assert(getNaNPayload(a) == 1_000_000); 135 } 136 137 @system pure nothrow @nogc unittest // not @safe because taking address of local. 138 { 139 import std.math.traits : floatTraits, RealFormat; 140 141 static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble) 142 { 143 auto x = NaN(1); 144 auto xl = *cast(ulong*)&x; 145 assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52 146 assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set 147 } 148 } 149 150 /** 151 * Extract an integral payload from a $(NAN). 152 * 153 * Returns: 154 * the integer payload as a ulong. 155 * 156 * For floats, the largest possible payload is 0x3F_FFFF. 157 * For doubles, it is 0x3_FFFF_FFFF_FFFF. 158 * For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF. 159 */ 160 ulong getNaNPayload(real x) @trusted pure nothrow @nogc 161 in 162 { 163 // Precondition: Input must be NaN 164 import std.math.traits : isNaN; 165 assert(isNaN(x), "getNaNPayload called on a non-NaN value"); 166 } 167 do 168 { 169 import std.math.traits : floatTraits, RealFormat; 170 171 // assert(isNaN(x)); 172 alias F = floatTraits!(real); 173 ulong m = void; 174 if (__ctfe) 175 { 176 double y = x; 177 m = *cast(ulong*) &y; 178 // Make it look like an 80-bit significand. 179 // Skip exponent, and quiet bit 180 m &= 0x0007_FFFF_FFFF_FFFF; 181 m <<= 11; 182 } 183 else static if (F.realFormat == RealFormat.ieeeDouble) 184 { 185 m = *cast(ulong*)(&x); 186 // Make it look like an 80-bit significand. 187 // Skip exponent, and quiet bit 188 m &= 0x0007_FFFF_FFFF_FFFF; 189 m <<= 11; 190 } 191 else static if (F.realFormat == RealFormat.ieeeQuadruple) 192 { 193 version (LittleEndian) 194 { 195 m = *cast(ulong*)(6+cast(ubyte*)(&x)); 196 } 197 else 198 { 199 m = *cast(ulong*)(2+cast(ubyte*)(&x)); 200 } 201 202 m >>= 1; // there's no implicit bit 203 } 204 else 205 { 206 m = *cast(ulong*)(&x); 207 } 208 209 // ignore implicit bit and quiet bit 210 211 const ulong f = m & 0x3FFF_FF00_0000_0000L; 212 213 ulong w = f >>> 40; 214 w |= (m & 0x00FF_FFFF_F800L) << (22 - 11); 215 w |= (m & 0x7FF) << 51; 216 return w; 217 } 218 219 /// 220 @safe @nogc pure nothrow unittest 221 { 222 import std.math.traits : isNaN; 223 224 real a = NaN(1_000_000); 225 assert(isNaN(a)); 226 assert(getNaNPayload(a) == 1_000_000); 227 } 228 229 @safe @nogc pure nothrow unittest 230 { 231 import std.math.traits : isIdentical, isNaN; 232 233 enum real a = NaN(1_000_000); 234 static assert(isNaN(a)); 235 static assert(getNaNPayload(a) == 1_000_000); 236 real b = NaN(1_000_000); 237 assert(isIdentical(b, a)); 238 // The CTFE version of getNaNPayload relies on it being impossible 239 // for a CTFE-constructed NaN to have more than 51 bits of payload. 240 enum nanNaN = NaN(getNaNPayload(real.nan)); 241 assert(isIdentical(real.nan, nanNaN)); 242 static if (real.init != real.init) 243 { 244 enum initNaN = NaN(getNaNPayload(real.init)); 245 assert(isIdentical(real.init, initNaN)); 246 } 247 } 248 249 debug(UnitTest) 250 { 251 @safe pure nothrow @nogc unittest 252 { 253 real nan4 = NaN(0x789_ABCD_EF12_3456); 254 static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended 255 || floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) 256 { 257 assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456); 258 } 259 else 260 { 261 assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456); 262 } 263 double nan5 = nan4; 264 assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456); 265 float nan6 = nan4; 266 assert(getNaNPayload(nan6) == 0x12_3456); 267 nan4 = NaN(0xFABCD); 268 assert(getNaNPayload(nan4) == 0xFABCD); 269 nan6 = nan4; 270 assert(getNaNPayload(nan6) == 0xFABCD); 271 nan5 = NaN(0x100_0000_0000_3456); 272 assert(getNaNPayload(nan5) == 0x0000_0000_3456); 273 } 274 } 275 276 /** 277 * Calculate the next largest floating point value after x. 278 * 279 * Return the least number greater than x that is representable as a real; 280 * thus, it gives the next point on the IEEE number line. 281 * 282 * $(TABLE_SV 283 * $(SVH x, nextUp(x) ) 284 * $(SV -$(INFIN), -real.max ) 285 * $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon ) 286 * $(SV real.max, $(INFIN) ) 287 * $(SV $(INFIN), $(INFIN) ) 288 * $(SV $(NAN), $(NAN) ) 289 * ) 290 */ 291 real nextUp(real x) @trusted pure nothrow @nogc 292 { 293 import std.math.traits : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB; 294 295 alias F = floatTraits!(real); 296 static if (F.realFormat != RealFormat.ieeeDouble) 297 { 298 if (__ctfe) 299 { 300 if (x == -real.infinity) 301 return -real.max; 302 if (!(x < real.infinity)) // Infinity or NaN. 303 return x; 304 real delta; 305 // Start with a decent estimate of delta. 306 if (x <= 0x1.ffffffffffffep+1023 && x >= -double.max) 307 { 308 const double d = cast(double) x; 309 delta = (cast(real) nextUp(d) - cast(real) d) * 0x1p-11L; 310 while (x + (delta * 0x1p-100L) > x) 311 delta *= 0x1p-100L; 312 } 313 else 314 { 315 delta = 0x1p960L; 316 while (!(x + delta > x) && delta < real.max * 0x1p-100L) 317 delta *= 0x1p100L; 318 } 319 if (x + delta > x) 320 { 321 while (x + (delta / 2) > x) 322 delta /= 2; 323 } 324 else 325 { 326 do { delta += delta; } while (!(x + delta > x)); 327 } 328 if (x < 0 && x + delta == 0) 329 return -0.0L; 330 return x + delta; 331 } 332 } 333 static if (F.realFormat == RealFormat.ieeeDouble) 334 { 335 return nextUp(cast(double) x); 336 } 337 else static if (F.realFormat == RealFormat.ieeeQuadruple) 338 { 339 ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT]; 340 if (e == F.EXPMASK) 341 { 342 // NaN or Infinity 343 if (x == -real.infinity) return -real.max; 344 return x; // +Inf and NaN are unchanged. 345 } 346 347 auto ps = cast(ulong *)&x; 348 if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000) 349 { 350 // Negative number 351 if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000) 352 { 353 // it was negative zero, change to smallest subnormal 354 ps[MANTISSA_LSB] = 1; 355 ps[MANTISSA_MSB] = 0; 356 return x; 357 } 358 if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB]; 359 --ps[MANTISSA_LSB]; 360 } 361 else 362 { 363 // Positive number 364 ++ps[MANTISSA_LSB]; 365 if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB]; 366 } 367 return x; 368 } 369 else static if (F.realFormat == RealFormat.ieeeExtended || 370 F.realFormat == RealFormat.ieeeExtended53) 371 { 372 // For 80-bit reals, the "implied bit" is a nuisance... 373 ushort *pe = cast(ushort *)&x; 374 ulong *ps = cast(ulong *)&x; 375 // EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals. 376 enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig); 377 378 if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK) 379 { 380 // First, deal with NANs and infinity 381 if (x == -real.infinity) return -real.max; 382 return x; // +Inf and NaN are unchanged. 383 } 384 if (pe[F.EXPPOS_SHORT] & 0x8000) 385 { 386 // Negative number -- need to decrease the significand 387 *ps -= EPSILON; 388 // Need to mask with 0x7FFF... so subnormals are treated correctly. 389 if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF) 390 { 391 if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero 392 { 393 *ps = 1; 394 pe[F.EXPPOS_SHORT] = 0; // smallest subnormal. 395 return x; 396 } 397 398 --pe[F.EXPPOS_SHORT]; 399 400 if (pe[F.EXPPOS_SHORT] == 0x8000) 401 return x; // it's become a subnormal, implied bit stays low. 402 403 *ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit 404 return x; 405 } 406 return x; 407 } 408 else 409 { 410 // Positive number -- need to increase the significand. 411 // Works automatically for positive zero. 412 *ps += EPSILON; 413 if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0) 414 { 415 // change in exponent 416 ++pe[F.EXPPOS_SHORT]; 417 *ps = 0x8000_0000_0000_0000; // set the high bit 418 } 419 } 420 return x; 421 } 422 else // static if (F.realFormat == RealFormat.ibmExtended) 423 { 424 assert(0, "nextUp not implemented"); 425 } 426 } 427 428 /** ditto */ 429 double nextUp(double x) @trusted pure nothrow @nogc 430 { 431 ulong s = *cast(ulong *)&x; 432 433 if ((s & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000) 434 { 435 // First, deal with NANs and infinity 436 if (x == -x.infinity) return -x.max; 437 return x; // +INF and NAN are unchanged. 438 } 439 if (s & 0x8000_0000_0000_0000) // Negative number 440 { 441 if (s == 0x8000_0000_0000_0000) // it was negative zero 442 { 443 s = 0x0000_0000_0000_0001; // change to smallest subnormal 444 return *cast(double*) &s; 445 } 446 --s; 447 } 448 else 449 { // Positive number 450 ++s; 451 } 452 return *cast(double*) &s; 453 } 454 455 /** ditto */ 456 float nextUp(float x) @trusted pure nothrow @nogc 457 { 458 uint s = *cast(uint *)&x; 459 460 if ((s & 0x7F80_0000) == 0x7F80_0000) 461 { 462 // First, deal with NANs and infinity 463 if (x == -x.infinity) return -x.max; 464 465 return x; // +INF and NAN are unchanged. 466 } 467 if (s & 0x8000_0000) // Negative number 468 { 469 if (s == 0x8000_0000) // it was negative zero 470 { 471 s = 0x0000_0001; // change to smallest subnormal 472 return *cast(float*) &s; 473 } 474 475 --s; 476 } 477 else 478 { 479 // Positive number 480 ++s; 481 } 482 return *cast(float*) &s; 483 } 484 485 /// 486 @safe @nogc pure nothrow unittest 487 { 488 assert(nextUp(1.0 - 1.0e-6).feqrel(0.999999) > 16); 489 assert(nextUp(1.0 - real.epsilon).feqrel(1.0) > 16); 490 } 491 492 /** 493 * Calculate the next smallest floating point value before x. 494 * 495 * Return the greatest number less than x that is representable as a real; 496 * thus, it gives the previous point on the IEEE number line. 497 * 498 * $(TABLE_SV 499 * $(SVH x, nextDown(x) ) 500 * $(SV $(INFIN), real.max ) 501 * $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon ) 502 * $(SV -real.max, -$(INFIN) ) 503 * $(SV -$(INFIN), -$(INFIN) ) 504 * $(SV $(NAN), $(NAN) ) 505 * ) 506 */ 507 real nextDown(real x) @safe pure nothrow @nogc 508 { 509 return -nextUp(-x); 510 } 511 512 /** ditto */ 513 double nextDown(double x) @safe pure nothrow @nogc 514 { 515 return -nextUp(-x); 516 } 517 518 /** ditto */ 519 float nextDown(float x) @safe pure nothrow @nogc 520 { 521 return -nextUp(-x); 522 } 523 524 /// 525 @safe pure nothrow @nogc unittest 526 { 527 assert( nextDown(1.0 + real.epsilon) == 1.0); 528 } 529 530 @safe pure nothrow @nogc unittest 531 { 532 import std.math.traits : floatTraits, RealFormat, isIdentical; 533 534 static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended || 535 floatTraits!(real).realFormat == RealFormat.ieeeDouble || 536 floatTraits!(real).realFormat == RealFormat.ieeeExtended53 || 537 floatTraits!(real).realFormat == RealFormat.ieeeQuadruple) 538 { 539 // Tests for reals 540 assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); 541 //static assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC))); 542 // negative numbers 543 assert( nextUp(-real.infinity) == -real.max ); 544 assert( nextUp(-1.0L-real.epsilon) == -1.0 ); 545 assert( nextUp(-2.0L) == -2.0 + real.epsilon); 546 static assert( nextUp(-real.infinity) == -real.max ); 547 static assert( nextUp(-1.0L-real.epsilon) == -1.0 ); 548 static assert( nextUp(-2.0L) == -2.0 + real.epsilon); 549 // subnormals and zero 550 assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); 551 assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); 552 assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) ); 553 assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); 554 assert( nextUp(0.0L) == real.min_normal*real.epsilon ); 555 assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); 556 assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); 557 static assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) ); 558 static assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) ); 559 static assert( -0.0L is nextUp(-real.min_normal*real.epsilon) ); 560 static assert( nextUp(-0.0L) == real.min_normal*real.epsilon ); 561 static assert( nextUp(0.0L) == real.min_normal*real.epsilon ); 562 static assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal ); 563 static assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) ); 564 // positive numbers 565 assert( nextUp(1.0L) == 1.0 + real.epsilon ); 566 assert( nextUp(2.0L-real.epsilon) == 2.0 ); 567 assert( nextUp(real.max) == real.infinity ); 568 assert( nextUp(real.infinity)==real.infinity ); 569 static assert( nextUp(1.0L) == 1.0 + real.epsilon ); 570 static assert( nextUp(2.0L-real.epsilon) == 2.0 ); 571 static assert( nextUp(real.max) == real.infinity ); 572 static assert( nextUp(real.infinity)==real.infinity ); 573 // ctfe near double.max boundary 574 static assert(nextUp(nextDown(cast(real) double.max)) == cast(real) double.max); 575 } 576 577 double n = NaN(0xABC); 578 assert(isIdentical(nextUp(n), n)); 579 // negative numbers 580 assert( nextUp(-double.infinity) == -double.max ); 581 assert( nextUp(-1-double.epsilon) == -1.0 ); 582 assert( nextUp(-2.0) == -2.0 + double.epsilon); 583 // subnormals and zero 584 585 assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); 586 assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); 587 assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) ); 588 assert( nextUp(0.0) == double.min_normal*double.epsilon ); 589 assert( nextUp(-0.0) == double.min_normal*double.epsilon ); 590 assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); 591 assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); 592 // positive numbers 593 assert( nextUp(1.0) == 1.0 + double.epsilon ); 594 assert( nextUp(2.0-double.epsilon) == 2.0 ); 595 assert( nextUp(double.max) == double.infinity ); 596 597 float fn = NaN(0xABC); 598 assert(isIdentical(nextUp(fn), fn)); 599 float f = -float.min_normal*(1-float.epsilon); 600 float f1 = -float.min_normal; 601 assert( nextUp(f1) == f); 602 f = 1.0f+float.epsilon; 603 f1 = 1.0f; 604 assert( nextUp(f1) == f ); 605 f1 = -0.0f; 606 assert( nextUp(f1) == float.min_normal*float.epsilon); 607 assert( nextUp(float.infinity)==float.infinity ); 608 609 assert(nextDown(1.0L+real.epsilon)==1.0); 610 assert(nextDown(1.0+double.epsilon)==1.0); 611 f = 1.0f+float.epsilon; 612 assert(nextDown(f)==1.0); 613 assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); 614 615 // CTFE 616 617 enum double ctfe_n = NaN(0xABC); 618 //static assert(isIdentical(nextUp(ctfe_n), ctfe_n)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 619 static assert(nextUp(double.nan) is double.nan); 620 // negative numbers 621 static assert( nextUp(-double.infinity) == -double.max ); 622 static assert( nextUp(-1-double.epsilon) == -1.0 ); 623 static assert( nextUp(-2.0) == -2.0 + double.epsilon); 624 // subnormals and zero 625 626 static assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) ); 627 static assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) ); 628 static assert( -0.0 is nextUp(-double.min_normal*double.epsilon) ); 629 static assert( nextUp(0.0) == double.min_normal*double.epsilon ); 630 static assert( nextUp(-0.0) == double.min_normal*double.epsilon ); 631 static assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal ); 632 static assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) ); 633 // positive numbers 634 static assert( nextUp(1.0) == 1.0 + double.epsilon ); 635 static assert( nextUp(2.0-double.epsilon) == 2.0 ); 636 static assert( nextUp(double.max) == double.infinity ); 637 638 enum float ctfe_fn = NaN(0xABC); 639 //static assert(isIdentical(nextUp(ctfe_fn), ctfe_fn)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197 640 static assert(nextUp(float.nan) is float.nan); 641 static assert(nextUp(-float.min_normal) == -float.min_normal*(1-float.epsilon)); 642 static assert(nextUp(1.0f) == 1.0f+float.epsilon); 643 static assert(nextUp(-0.0f) == float.min_normal*float.epsilon); 644 static assert(nextUp(float.infinity)==float.infinity); 645 static assert(nextDown(1.0L+real.epsilon)==1.0); 646 static assert(nextDown(1.0+double.epsilon)==1.0); 647 static assert(nextDown(1.0f+float.epsilon)==1.0); 648 static assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0); 649 } 650 651 652 653 /****************************************** 654 * Calculates the next representable value after x in the direction of y. 655 * 656 * If y > x, the result will be the next largest floating-point value; 657 * if y < x, the result will be the next smallest value. 658 * If x == y, the result is y. 659 * If x or y is a NaN, the result is a NaN. 660 * 661 * Remarks: 662 * This function is not generally very useful; it's almost always better to use 663 * the faster functions nextUp() or nextDown() instead. 664 * 665 * The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and 666 * the function result is infinite. The FE_INEXACT and FE_UNDERFLOW 667 * exceptions will be raised if the function value is subnormal, and x is 668 * not equal to y. 669 */ 670 T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc 671 { 672 import std.math.traits : isNaN; 673 674 if (x == y || isNaN(y)) 675 { 676 return y; 677 } 678 679 if (isNaN(x)) 680 { 681 return x; 682 } 683 684 return ((y>x) ? nextUp(x) : nextDown(x)); 685 } 686 687 /// 688 @safe pure nothrow @nogc unittest 689 { 690 import std.math.traits : isNaN; 691 692 float a = 1; 693 assert(is(typeof(nextafter(a, a)) == float)); 694 assert(nextafter(a, a.infinity) > a); 695 assert(isNaN(nextafter(a, a.nan))); 696 assert(isNaN(nextafter(a.nan, a))); 697 698 double b = 2; 699 assert(is(typeof(nextafter(b, b)) == double)); 700 assert(nextafter(b, b.infinity) > b); 701 assert(isNaN(nextafter(b, b.nan))); 702 assert(isNaN(nextafter(b.nan, b))); 703 704 real c = 3; 705 assert(is(typeof(nextafter(c, c)) == real)); 706 assert(nextafter(c, c.infinity) > c); 707 assert(isNaN(nextafter(c, c.nan))); 708 assert(isNaN(nextafter(c.nan, c))); 709 } 710 711 @safe pure nothrow @nogc unittest 712 { 713 import std.math.traits : isNaN, signbit; 714 715 // CTFE 716 enum float a = 1; 717 static assert(is(typeof(nextafter(a, a)) == float)); 718 static assert(nextafter(a, a.infinity) > a); 719 static assert(isNaN(nextafter(a, a.nan))); 720 static assert(isNaN(nextafter(a.nan, a))); 721 722 enum double b = 2; 723 static assert(is(typeof(nextafter(b, b)) == double)); 724 static assert(nextafter(b, b.infinity) > b); 725 static assert(isNaN(nextafter(b, b.nan))); 726 static assert(isNaN(nextafter(b.nan, b))); 727 728 enum real c = 3; 729 static assert(is(typeof(nextafter(c, c)) == real)); 730 static assert(nextafter(c, c.infinity) > c); 731 static assert(isNaN(nextafter(c, c.nan))); 732 static assert(isNaN(nextafter(c.nan, c))); 733 734 enum real negZero = nextafter(+0.0L, -0.0L); 735 static assert(negZero == -0.0L); 736 static assert(signbit(negZero)); 737 738 static assert(nextafter(c, c) == c); 739 } 740 741 //real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); } 742 743 /** 744 * Returns the positive difference between x and y. 745 * 746 * Equivalent to `fmax(x-y, 0)`. 747 * 748 * Returns: 749 * $(TABLE_SV 750 * $(TR $(TH x, y) $(TH fdim(x, y))) 751 * $(TR $(TD x $(GT) y) $(TD x - y)) 752 * $(TR $(TD x $(LT)= y) $(TD +0.0)) 753 * ) 754 */ 755 real fdim(real x, real y) @safe pure nothrow @nogc 756 { 757 return (x < y) ? +0.0 : x - y; 758 } 759 760 /// 761 @safe pure nothrow @nogc unittest 762 { 763 import std.math.traits : isNaN; 764 765 assert(fdim(2.0, 0.0) == 2.0); 766 assert(fdim(-2.0, 0.0) == 0.0); 767 assert(fdim(real.infinity, 2.0) == real.infinity); 768 assert(isNaN(fdim(real.nan, 2.0))); 769 assert(isNaN(fdim(2.0, real.nan))); 770 assert(isNaN(fdim(real.nan, real.nan))); 771 } 772 773 /** 774 * Returns the larger of `x` and `y`. 775 * 776 * If one of the arguments is a `NaN`, the other is returned. 777 * 778 * See_Also: $(REF max, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. 779 */ 780 F fmax(F)(const F x, const F y) @safe pure nothrow @nogc 781 if (__traits(isFloating, F)) 782 { 783 import std.math.traits : isNaN; 784 785 // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. 786 // See https://godbolt.org/z/erxrW9 787 if (isNaN(x)) return y; 788 return y > x ? y : x; 789 } 790 791 /// 792 @safe pure nothrow @nogc unittest 793 { 794 import std.meta : AliasSeq; 795 static foreach (F; AliasSeq!(float, double, real)) 796 { 797 assert(fmax(F(0.0), F(2.0)) == 2.0); 798 assert(fmax(F(-2.0), 0.0) == F(0.0)); 799 assert(fmax(F.infinity, F(2.0)) == F.infinity); 800 assert(fmax(F.nan, F(2.0)) == F(2.0)); 801 assert(fmax(F(2.0), F.nan) == F(2.0)); 802 } 803 } 804 805 /** 806 * Returns the smaller of `x` and `y`. 807 * 808 * If one of the arguments is a `NaN`, the other is returned. 809 * 810 * See_Also: $(REF min, std,algorithm,comparison) is faster because it does not perform the `isNaN` test. 811 */ 812 F fmin(F)(const F x, const F y) @safe pure nothrow @nogc 813 if (__traits(isFloating, F)) 814 { 815 import std.math.traits : isNaN; 816 817 // Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc. 818 // See https://godbolt.org/z/erxrW9 819 if (isNaN(x)) return y; 820 return y < x ? y : x; 821 } 822 823 /// 824 @safe pure nothrow @nogc unittest 825 { 826 import std.meta : AliasSeq; 827 static foreach (F; AliasSeq!(float, double, real)) 828 { 829 assert(fmin(F(0.0), F(2.0)) == 0.0); 830 assert(fmin(F(-2.0), F(0.0)) == -2.0); 831 assert(fmin(F.infinity, F(2.0)) == 2.0); 832 assert(fmin(F.nan, F(2.0)) == 2.0); 833 assert(fmin(F(2.0), F.nan) == 2.0); 834 } 835 } 836 837 /************************************** 838 * Returns (x * y) + z, rounding only once according to the 839 * current rounding mode. 840 * 841 * BUGS: Not currently implemented - rounds twice. 842 */ 843 pragma(inline, true) 844 real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; } 845 846 /// 847 @safe pure nothrow @nogc unittest 848 { 849 assert(fma(0.0, 2.0, 2.0) == 2.0); 850 assert(fma(2.0, 2.0, 2.0) == 6.0); 851 assert(fma(real.infinity, 2.0, 2.0) == real.infinity); 852 assert(fma(real.nan, 2.0, 2.0) is real.nan); 853 assert(fma(2.0, 2.0, real.nan) is real.nan); 854 } 855 856 /************************************** 857 * To what precision is x equal to y? 858 * 859 * Returns: the number of mantissa bits which are equal in x and y. 860 * eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision. 861 * 862 * $(TABLE_SV 863 * $(TR $(TH x) $(TH y) $(TH feqrel(x, y))) 864 * $(TR $(TD x) $(TD x) $(TD real.mant_dig)) 865 * $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0)) 866 * $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0)) 867 * $(TR $(TD $(NAN)) $(TD any) $(TD 0)) 868 * $(TR $(TD any) $(TD $(NAN)) $(TD 0)) 869 * ) 870 */ 871 int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc 872 if (isFloatingPoint!(X)) 873 { 874 import std.math.traits : floatTraits, RealFormat; 875 import core.math : fabs; 876 877 /* Public Domain. Author: Don Clugston, 18 Aug 2005. 878 */ 879 alias F = floatTraits!(X); 880 static if (F.realFormat == RealFormat.ieeeSingle 881 || F.realFormat == RealFormat.ieeeDouble 882 || F.realFormat == RealFormat.ieeeExtended 883 || F.realFormat == RealFormat.ieeeExtended53 884 || F.realFormat == RealFormat.ieeeQuadruple) 885 { 886 if (x == y) 887 return X.mant_dig; // ensure diff != 0, cope with INF. 888 889 Unqual!X diff = fabs(x - y); 890 891 ushort *pa = cast(ushort *)(&x); 892 ushort *pb = cast(ushort *)(&y); 893 ushort *pd = cast(ushort *)(&diff); 894 895 896 // The difference in abs(exponent) between x or y and abs(x-y) 897 // is equal to the number of significand bits of x which are 898 // equal to y. If negative, x and y have different exponents. 899 // If positive, x and y are equal to 'bitsdiff' bits. 900 // AND with 0x7FFF to form the absolute value. 901 // To avoid out-by-1 errors, we subtract 1 so it rounds down 902 // if the exponents were different. This means 'bitsdiff' is 903 // always 1 lower than we want, except that if bitsdiff == 0, 904 // they could have 0 or 1 bits in common. 905 906 int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK) 907 + (pb[F.EXPPOS_SHORT] & F.EXPMASK) 908 - (1 << F.EXPSHIFT)) >> 1) 909 - (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT; 910 if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0) 911 { // Difference is subnormal 912 // For subnormals, we need to add the number of zeros that 913 // lie at the start of diff's significand. 914 // We do this by multiplying by 2^^real.mant_dig 915 diff *= F.RECIP_EPSILON; 916 return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT); 917 } 918 919 if (bitsdiff > 0) 920 return bitsdiff + 1; // add the 1 we subtracted before 921 922 // Avoid out-by-1 errors when factor is almost 2. 923 if (bitsdiff == 0 924 && ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0) 925 { 926 return 1; 927 } else return 0; 928 } 929 else 930 { 931 static assert(false, "Not implemented for this architecture"); 932 } 933 } 934 935 /// 936 @safe pure unittest 937 { 938 assert(feqrel(2.0, 2.0) == 53); 939 assert(feqrel(2.0f, 2.0f) == 24); 940 assert(feqrel(2.0, double.nan) == 0); 941 942 // Test that numbers are within n digits of each 943 // other by testing if feqrel > n * log2(10) 944 945 // five digits 946 assert(feqrel(2.0, 2.00001) > 16); 947 // ten digits 948 assert(feqrel(2.0, 2.00000000001) > 33); 949 } 950 951 @safe pure nothrow @nogc unittest 952 { 953 void testFeqrel(F)() 954 { 955 // Exact equality 956 assert(feqrel(F.max, F.max) == F.mant_dig); 957 assert(feqrel!(F)(0.0, 0.0) == F.mant_dig); 958 assert(feqrel(F.infinity, F.infinity) == F.mant_dig); 959 960 // a few bits away from exact equality 961 F w=1; 962 for (int i = 1; i < F.mant_dig - 1; ++i) 963 { 964 assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i); 965 assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i); 966 assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1); 967 w*=2; 968 } 969 970 assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1); 971 assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1); 972 assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2); 973 974 975 // Numbers that are close 976 assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5); 977 assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2); 978 assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2); 979 assert(feqrel!(F)(1.5, 1.0) == 1); 980 assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); 981 982 // Factors of 2 983 assert(feqrel(F.max, F.infinity) == 0); 984 assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1); 985 assert(feqrel!(F)(1.0, 2.0) == 0); 986 assert(feqrel!(F)(4.0, 1.0) == 0); 987 988 // Extreme inequality 989 assert(feqrel(F.nan, F.nan) == 0); 990 assert(feqrel!(F)(0.0L, -F.nan) == 0); 991 assert(feqrel(F.nan, F.infinity) == 0); 992 assert(feqrel(F.infinity, -F.infinity) == 0); 993 assert(feqrel(F.max, -F.max) == 0); 994 995 assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3); 996 997 const F Const = 2; 998 immutable F Immutable = 2; 999 auto Compiles = feqrel(Const, Immutable); 1000 } 1001 1002 assert(feqrel(7.1824L, 7.1824L) == real.mant_dig); 1003 1004 testFeqrel!(real)(); 1005 testFeqrel!(double)(); 1006 testFeqrel!(float)(); 1007 } 1008 1009 /** 1010 Computes whether a values is approximately equal to a reference value, 1011 admitting a maximum relative difference, and a maximum absolute difference. 1012 1013 Warning: 1014 This template is considered out-dated. It will be removed from 1015 Phobos in 2.106.0. Please use $(LREF isClose) instead. To achieve 1016 a similar behaviour to `approxEqual(a, b)` use 1017 `isClose(a, b, 1e-2, 1e-5)`. In case of comparing to 0.0, 1018 `isClose(a, b, 0.0, eps)` should be used, where `eps` 1019 represents the accepted deviation from 0.0." 1020 1021 Params: 1022 value = Value to compare. 1023 reference = Reference value. 1024 maxRelDiff = Maximum allowable difference relative to `reference`. 1025 Setting to 0.0 disables this check. Defaults to `1e-2`. 1026 maxAbsDiff = Maximum absolute difference. This is mainly usefull 1027 for comparing values to zero. Setting to 0.0 disables this check. 1028 Defaults to `1e-5`. 1029 1030 Returns: 1031 `true` if `value` is approximately equal to `reference` under 1032 either criterium. It is sufficient, when `value ` satisfies 1033 one of the two criteria. 1034 1035 If one item is a range, and the other is a single value, then 1036 the result is the logical and-ing of calling `approxEqual` on 1037 each element of the ranged item against the single item. If 1038 both items are ranges, then `approxEqual` returns `true` if 1039 and only if the ranges have the same number of elements and if 1040 `approxEqual` evaluates to `true` for each pair of elements. 1041 1042 See_Also: 1043 Use $(LREF feqrel) to get the number of equal bits in the mantissa. 1044 */ 1045 deprecated("approxEqual will be removed in 2.106.0. Please use isClose instead.") 1046 bool approxEqual(T, U, V)(T value, U reference, V maxRelDiff = 1e-2, V maxAbsDiff = 1e-5) 1047 { 1048 import core.math : fabs; 1049 import std.range.primitives : empty, front, isInputRange, popFront; 1050 static if (isInputRange!T) 1051 { 1052 static if (isInputRange!U) 1053 { 1054 // Two ranges 1055 for (;; value.popFront(), reference.popFront()) 1056 { 1057 if (value.empty) return reference.empty; 1058 if (reference.empty) return value.empty; 1059 if (!approxEqual(value.front, reference.front, maxRelDiff, maxAbsDiff)) 1060 return false; 1061 } 1062 } 1063 else static if (isIntegral!U) 1064 { 1065 // convert reference to real 1066 return approxEqual(value, real(reference), maxRelDiff, maxAbsDiff); 1067 } 1068 else 1069 { 1070 // value is range, reference is number 1071 for (; !value.empty; value.popFront()) 1072 { 1073 if (!approxEqual(value.front, reference, maxRelDiff, maxAbsDiff)) 1074 return false; 1075 } 1076 return true; 1077 } 1078 } 1079 else 1080 { 1081 static if (isInputRange!U) 1082 { 1083 // value is number, reference is range 1084 for (; !reference.empty; reference.popFront()) 1085 { 1086 if (!approxEqual(value, reference.front, maxRelDiff, maxAbsDiff)) 1087 return false; 1088 } 1089 return true; 1090 } 1091 else static if (isIntegral!T || isIntegral!U) 1092 { 1093 // convert both value and reference to real 1094 return approxEqual(real(value), real(reference), maxRelDiff, maxAbsDiff); 1095 } 1096 else 1097 { 1098 // two numbers 1099 //static assert(is(T : real) && is(U : real)); 1100 if (reference == 0) 1101 { 1102 return fabs(value) <= maxAbsDiff; 1103 } 1104 static if (is(typeof(value.infinity)) && is(typeof(reference.infinity))) 1105 { 1106 if (value == value.infinity && reference == reference.infinity || 1107 value == -value.infinity && reference == -reference.infinity) return true; 1108 } 1109 return fabs((value - reference) / reference) <= maxRelDiff 1110 || maxAbsDiff != 0 && fabs(value - reference) <= maxAbsDiff; 1111 } 1112 } 1113 } 1114 1115 deprecated @safe pure nothrow unittest 1116 { 1117 assert(approxEqual(1.0, 1.0099)); 1118 assert(!approxEqual(1.0, 1.011)); 1119 assert(approxEqual(0.00001, 0.0)); 1120 assert(!approxEqual(0.00002, 0.0)); 1121 1122 assert(approxEqual(3.0, [3, 3.01, 2.99])); // several reference values is strange 1123 assert(approxEqual([3, 3.01, 2.99], 3.0)); // better 1124 1125 float[] arr1 = [ 1.0, 2.0, 3.0 ]; 1126 double[] arr2 = [ 1.001, 1.999, 3 ]; 1127 assert(approxEqual(arr1, arr2)); 1128 } 1129 1130 deprecated @safe pure nothrow unittest 1131 { 1132 // relative comparison depends on reference, make sure proper 1133 // side is used when comparing range to single value. Based on 1134 // https://issues.dlang.org/show_bug.cgi?id=15763 1135 auto a = [2e-3 - 1e-5]; 1136 auto b = 2e-3 + 1e-5; 1137 assert(a[0].approxEqual(b)); 1138 assert(!b.approxEqual(a[0])); 1139 assert(a.approxEqual(b)); 1140 assert(!b.approxEqual(a)); 1141 } 1142 1143 deprecated @safe pure nothrow @nogc unittest 1144 { 1145 assert(!approxEqual(0.0,1e-15,1e-9,0.0)); 1146 assert(approxEqual(0.0,1e-15,1e-9,1e-9)); 1147 assert(!approxEqual(1.0,3.0,0.0,1.0)); 1148 1149 assert(approxEqual(1.00000000099,1.0,1e-9,0.0)); 1150 assert(!approxEqual(1.0000000011,1.0,1e-9,0.0)); 1151 } 1152 1153 deprecated @safe pure nothrow @nogc unittest 1154 { 1155 // maybe unintuitive behavior 1156 assert(approxEqual(1000.0,1010.0)); 1157 assert(approxEqual(9_090_000_000.0,9_000_000_000.0)); 1158 assert(approxEqual(0.0,1e30,1.0)); 1159 assert(approxEqual(0.00001,1e-30)); 1160 assert(!approxEqual(-1e-30,1e-30,1e-2,0.0)); 1161 } 1162 1163 deprecated @safe pure nothrow @nogc unittest 1164 { 1165 int a = 10; 1166 assert(approxEqual(10, a)); 1167 1168 assert(!approxEqual(3, 0)); 1169 assert(approxEqual(3, 3)); 1170 assert(approxEqual(3.0, 3)); 1171 assert(approxEqual(3, 3.0)); 1172 1173 assert(approxEqual(0.0,0.0)); 1174 assert(approxEqual(-0.0,0.0)); 1175 assert(approxEqual(0.0f,0.0)); 1176 } 1177 1178 deprecated @safe pure nothrow @nogc unittest 1179 { 1180 real num = real.infinity; 1181 assert(num == real.infinity); 1182 assert(approxEqual(num, real.infinity)); 1183 num = -real.infinity; 1184 assert(num == -real.infinity); 1185 assert(approxEqual(num, -real.infinity)); 1186 1187 assert(!approxEqual(1,real.nan)); 1188 assert(!approxEqual(real.nan,real.max)); 1189 assert(!approxEqual(real.nan,real.nan)); 1190 } 1191 1192 deprecated @safe pure nothrow unittest 1193 { 1194 assert(!approxEqual([1.0,2.0,3.0],[1.0,2.0])); 1195 assert(!approxEqual([1.0,2.0],[1.0,2.0,3.0])); 1196 1197 assert(approxEqual!(real[],real[])([],[])); 1198 assert(approxEqual(cast(real[])[],cast(real[])[])); 1199 } 1200 1201 1202 /** 1203 Computes whether two values are approximately equal, admitting a maximum 1204 relative difference, and a maximum absolute difference. 1205 1206 Params: 1207 lhs = First item to compare. 1208 rhs = Second item to compare. 1209 maxRelDiff = Maximum allowable relative difference. 1210 Setting to 0.0 disables this check. Default depends on the type of 1211 `lhs` and `rhs`: It is approximately half the number of decimal digits of 1212 precision of the smaller type. 1213 maxAbsDiff = Maximum absolute difference. This is mainly usefull 1214 for comparing values to zero. Setting to 0.0 disables this check. 1215 Defaults to `0.0`. 1216 1217 Returns: 1218 `true` if the two items are approximately equal under either criterium. 1219 It is sufficient, when `value ` satisfies one of the two criteria. 1220 1221 If one item is a range, and the other is a single value, then 1222 the result is the logical and-ing of calling `isClose` on 1223 each element of the ranged item against the single item. If 1224 both items are ranges, then `isClose` returns `true` if 1225 and only if the ranges have the same number of elements and if 1226 `isClose` evaluates to `true` for each pair of elements. 1227 1228 See_Also: 1229 Use $(LREF feqrel) to get the number of equal bits in the mantissa. 1230 */ 1231 bool isClose(T, U, V = CommonType!(FloatingPointBaseType!T,FloatingPointBaseType!U)) 1232 (T lhs, U rhs, V maxRelDiff = CommonDefaultFor!(T,U), V maxAbsDiff = 0.0) 1233 { 1234 import std.range.primitives : empty, front, isInputRange, popFront; 1235 import std.complex : Complex; 1236 static if (isInputRange!T) 1237 { 1238 static if (isInputRange!U) 1239 { 1240 // Two ranges 1241 for (;; lhs.popFront(), rhs.popFront()) 1242 { 1243 if (lhs.empty) return rhs.empty; 1244 if (rhs.empty) return lhs.empty; 1245 if (!isClose(lhs.front, rhs.front, maxRelDiff, maxAbsDiff)) 1246 return false; 1247 } 1248 } 1249 else 1250 { 1251 // lhs is range, rhs is number 1252 for (; !lhs.empty; lhs.popFront()) 1253 { 1254 if (!isClose(lhs.front, rhs, maxRelDiff, maxAbsDiff)) 1255 return false; 1256 } 1257 return true; 1258 } 1259 } 1260 else static if (isInputRange!U) 1261 { 1262 // lhs is number, rhs is range 1263 for (; !rhs.empty; rhs.popFront()) 1264 { 1265 if (!isClose(lhs, rhs.front, maxRelDiff, maxAbsDiff)) 1266 return false; 1267 } 1268 return true; 1269 } 1270 else static if (is(T TE == Complex!TE)) 1271 { 1272 static if (is(U UE == Complex!UE)) 1273 { 1274 // Two complex numbers 1275 return isClose(lhs.re, rhs.re, maxRelDiff, maxAbsDiff) 1276 && isClose(lhs.im, rhs.im, maxRelDiff, maxAbsDiff); 1277 } 1278 else 1279 { 1280 // lhs is complex, rhs is number 1281 return isClose(lhs.re, rhs, maxRelDiff, maxAbsDiff) 1282 && isClose(lhs.im, 0.0, maxRelDiff, maxAbsDiff); 1283 } 1284 } 1285 else static if (is(U UE == Complex!UE)) 1286 { 1287 // lhs is number, rhs is complex 1288 return isClose(lhs, rhs.re, maxRelDiff, maxAbsDiff) 1289 && isClose(0.0, rhs.im, maxRelDiff, maxAbsDiff); 1290 } 1291 else 1292 { 1293 // two numbers 1294 if (lhs == rhs) return true; 1295 1296 static if (is(typeof(lhs.infinity))) 1297 if (lhs == lhs.infinity || lhs == -lhs.infinity) 1298 return false; 1299 static if (is(typeof(rhs.infinity))) 1300 if (rhs == rhs.infinity || rhs == -rhs.infinity) 1301 return false; 1302 1303 import std.math.algebraic : abs; 1304 1305 auto diff = abs(lhs - rhs); 1306 1307 return diff <= maxRelDiff*abs(lhs) 1308 || diff <= maxRelDiff*abs(rhs) 1309 || diff <= maxAbsDiff; 1310 } 1311 } 1312 1313 /// 1314 @safe pure nothrow @nogc unittest 1315 { 1316 assert(isClose(1.0,0.999_999_999)); 1317 assert(isClose(0.001, 0.000_999_999_999)); 1318 assert(isClose(1_000_000_000.0,999_999_999.0)); 1319 1320 assert(isClose(17.123_456_789, 17.123_456_78)); 1321 assert(!isClose(17.123_456_789, 17.123_45)); 1322 1323 // use explicit 3rd parameter for less (or more) accuracy 1324 assert(isClose(17.123_456_789, 17.123_45, 1e-6)); 1325 assert(!isClose(17.123_456_789, 17.123_45, 1e-7)); 1326 1327 // use 4th parameter when comparing close to zero 1328 assert(!isClose(1e-100, 0.0)); 1329 assert(isClose(1e-100, 0.0, 0.0, 1e-90)); 1330 assert(!isClose(1e-10, -1e-10)); 1331 assert(isClose(1e-10, -1e-10, 0.0, 1e-9)); 1332 assert(!isClose(1e-300, 1e-298)); 1333 assert(isClose(1e-300, 1e-298, 0.0, 1e-200)); 1334 1335 // different default limits for different floating point types 1336 assert(isClose(1.0f, 0.999_99f)); 1337 assert(!isClose(1.0, 0.999_99)); 1338 static if (real.sizeof > double.sizeof) 1339 assert(!isClose(1.0L, 0.999_999_999L)); 1340 } 1341 1342 /// 1343 @safe pure nothrow unittest 1344 { 1345 assert(isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001, 3.0])); 1346 assert(!isClose([1.0, 2.0], [0.999_999_999, 2.000_000_001, 3.0])); 1347 assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001])); 1348 1349 assert(isClose([2.0, 1.999_999_999, 2.000_000_001], 2.0)); 1350 assert(isClose(2.0, [2.0, 1.999_999_999, 2.000_000_001])); 1351 } 1352 1353 @safe pure nothrow unittest 1354 { 1355 assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 3.0, 3.0])); 1356 assert(!isClose([2.0, 1.999_999, 2.000_000_001], 2.0)); 1357 assert(!isClose(2.0, [2.0, 1.999_999_999, 2.000_000_999])); 1358 } 1359 1360 @safe pure nothrow @nogc unittest 1361 { 1362 immutable a = 1.00001f; 1363 const b = 1.000019; 1364 assert(isClose(a,b)); 1365 1366 assert(isClose(1.00001f,1.000019f)); 1367 assert(isClose(1.00001f,1.000019)); 1368 assert(isClose(1.00001,1.000019f)); 1369 assert(!isClose(1.00001,1.000019)); 1370 1371 real a1 = 1e-300L; 1372 real a2 = a1.nextUp; 1373 assert(isClose(a1,a2)); 1374 } 1375 1376 @safe pure nothrow unittest 1377 { 1378 float[] arr1 = [ 1.0, 2.0, 3.0 ]; 1379 double[] arr2 = [ 1.00001, 1.99999, 3 ]; 1380 assert(isClose(arr1, arr2)); 1381 } 1382 1383 @safe pure nothrow @nogc unittest 1384 { 1385 assert(!isClose(1000.0,1010.0)); 1386 assert(!isClose(9_090_000_000.0,9_000_000_000.0)); 1387 assert(isClose(0.0,1e30,1.0)); 1388 assert(!isClose(0.00001,1e-30)); 1389 assert(!isClose(-1e-30,1e-30,1e-2,0.0)); 1390 } 1391 1392 @safe pure nothrow @nogc unittest 1393 { 1394 assert(!isClose(3, 0)); 1395 assert(isClose(3, 3)); 1396 assert(isClose(3.0, 3)); 1397 assert(isClose(3, 3.0)); 1398 1399 assert(isClose(0.0,0.0)); 1400 assert(isClose(-0.0,0.0)); 1401 assert(isClose(0.0f,0.0)); 1402 } 1403 1404 @safe pure nothrow @nogc unittest 1405 { 1406 real num = real.infinity; 1407 assert(num == real.infinity); 1408 assert(isClose(num, real.infinity)); 1409 num = -real.infinity; 1410 assert(num == -real.infinity); 1411 assert(isClose(num, -real.infinity)); 1412 1413 assert(!isClose(1,real.nan)); 1414 assert(!isClose(real.nan,real.max)); 1415 assert(!isClose(real.nan,real.nan)); 1416 1417 assert(!isClose(-double.infinity, 1)); 1418 } 1419 1420 @safe pure nothrow @nogc unittest 1421 { 1422 assert(isClose!(real[],real[],real)([],[])); 1423 assert(isClose(cast(real[])[],cast(real[])[])); 1424 } 1425 1426 @safe pure nothrow @nogc unittest 1427 { 1428 import std.conv : to; 1429 1430 float f = 31.79f; 1431 double d = 31.79; 1432 double f2d = f.to!double; 1433 1434 assert(isClose(f,f2d)); 1435 assert(!isClose(d,f2d)); 1436 } 1437 1438 @safe pure nothrow @nogc unittest 1439 { 1440 import std.conv : to; 1441 1442 double d = 31.79; 1443 float f = d.to!float; 1444 double f2d = f.to!double; 1445 1446 assert(isClose(f,f2d)); 1447 assert(!isClose(d,f2d)); 1448 assert(isClose(d,f2d,1e-4)); 1449 } 1450 1451 package(std.math) template CommonDefaultFor(T,U) 1452 { 1453 import std.algorithm.comparison : min; 1454 1455 alias baseT = FloatingPointBaseType!T; 1456 alias baseU = FloatingPointBaseType!U; 1457 1458 enum CommonType!(baseT, baseU) CommonDefaultFor = 10.0L ^^ -((min(baseT.dig, baseU.dig) + 1) / 2 + 1); 1459 } 1460 1461 private template FloatingPointBaseType(T) 1462 { 1463 import std.range.primitives : ElementType; 1464 static if (isFloatingPoint!T) 1465 { 1466 alias FloatingPointBaseType = Unqual!T; 1467 } 1468 else static if (isFloatingPoint!(ElementType!(Unqual!T))) 1469 { 1470 alias FloatingPointBaseType = Unqual!(ElementType!(Unqual!T)); 1471 } 1472 else 1473 { 1474 alias FloatingPointBaseType = real; 1475 } 1476 } 1477 1478 /*********************************** 1479 * Defines a total order on all floating-point numbers. 1480 * 1481 * The order is defined as follows: 1482 * $(UL 1483 * $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered 1484 * the same way as by built-in comparison, with the exception of 1485 * -0.0, which is less than +0.0;) 1486 * $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less 1487 * than any number; if the sign bit is not set (it is 'positive'), 1488 * $(NAN) is greater than any number;) 1489 * $(LI $(NAN)s of the same sign are ordered by the payload ('negative' 1490 * ones - in reverse order).) 1491 * ) 1492 * 1493 * Returns: 1494 * negative value if `x` precedes `y` in the order specified above; 1495 * 0 if `x` and `y` are identical, and positive value otherwise. 1496 * 1497 * See_Also: 1498 * $(MYREF isIdentical) 1499 * Standards: Conforms to IEEE 754-2008 1500 */ 1501 int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow 1502 if (isFloatingPoint!T) 1503 { 1504 import std.math.traits : floatTraits, RealFormat; 1505 1506 alias F = floatTraits!T; 1507 1508 static if (F.realFormat == RealFormat.ieeeSingle 1509 || F.realFormat == RealFormat.ieeeDouble) 1510 { 1511 static if (T.sizeof == 4) 1512 alias UInt = uint; 1513 else 1514 alias UInt = ulong; 1515 1516 union Repainter 1517 { 1518 T number; 1519 UInt bits; 1520 } 1521 1522 enum msb = ~(UInt.max >>> 1); 1523 1524 import std.typecons : Tuple; 1525 Tuple!(Repainter, Repainter) vars = void; 1526 vars[0].number = x; 1527 vars[1].number = y; 1528 1529 foreach (ref var; vars) 1530 if (var.bits & msb) 1531 var.bits = ~var.bits; 1532 else 1533 var.bits |= msb; 1534 1535 if (vars[0].bits < vars[1].bits) 1536 return -1; 1537 else if (vars[0].bits > vars[1].bits) 1538 return 1; 1539 else 1540 return 0; 1541 } 1542 else static if (F.realFormat == RealFormat.ieeeExtended53 1543 || F.realFormat == RealFormat.ieeeExtended 1544 || F.realFormat == RealFormat.ieeeQuadruple) 1545 { 1546 static if (F.realFormat == RealFormat.ieeeQuadruple) 1547 alias RemT = ulong; 1548 else 1549 alias RemT = ushort; 1550 1551 struct Bits 1552 { 1553 ulong bulk; 1554 RemT rem; 1555 } 1556 1557 union Repainter 1558 { 1559 T number; 1560 Bits bits; 1561 ubyte[T.sizeof] bytes; 1562 } 1563 1564 import std.typecons : Tuple; 1565 Tuple!(Repainter, Repainter) vars = void; 1566 vars[0].number = x; 1567 vars[1].number = y; 1568 1569 foreach (ref var; vars) 1570 if (var.bytes[F.SIGNPOS_BYTE] & 0x80) 1571 { 1572 var.bits.bulk = ~var.bits.bulk; 1573 var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem 1574 } 1575 else 1576 { 1577 var.bytes[F.SIGNPOS_BYTE] |= 0x80; 1578 } 1579 1580 version (LittleEndian) 1581 { 1582 if (vars[0].bits.rem < vars[1].bits.rem) 1583 return -1; 1584 else if (vars[0].bits.rem > vars[1].bits.rem) 1585 return 1; 1586 else if (vars[0].bits.bulk < vars[1].bits.bulk) 1587 return -1; 1588 else if (vars[0].bits.bulk > vars[1].bits.bulk) 1589 return 1; 1590 else 1591 return 0; 1592 } 1593 else 1594 { 1595 if (vars[0].bits.bulk < vars[1].bits.bulk) 1596 return -1; 1597 else if (vars[0].bits.bulk > vars[1].bits.bulk) 1598 return 1; 1599 else if (vars[0].bits.rem < vars[1].bits.rem) 1600 return -1; 1601 else if (vars[0].bits.rem > vars[1].bits.rem) 1602 return 1; 1603 else 1604 return 0; 1605 } 1606 } 1607 else 1608 { 1609 // IBM Extended doubledouble does not follow the general 1610 // sign-exponent-significand layout, so has to be handled generically 1611 1612 import std.math.traits : signbit, isNaN; 1613 1614 const int xSign = signbit(x), 1615 ySign = signbit(y); 1616 1617 if (xSign == 1 && ySign == 1) 1618 return cmp(-y, -x); 1619 else if (xSign == 1) 1620 return -1; 1621 else if (ySign == 1) 1622 return 1; 1623 else if (x < y) 1624 return -1; 1625 else if (x == y) 1626 return 0; 1627 else if (x > y) 1628 return 1; 1629 else if (isNaN(x) && !isNaN(y)) 1630 return 1; 1631 else if (isNaN(y) && !isNaN(x)) 1632 return -1; 1633 else if (getNaNPayload(x) < getNaNPayload(y)) 1634 return -1; 1635 else if (getNaNPayload(x) > getNaNPayload(y)) 1636 return 1; 1637 else 1638 return 0; 1639 } 1640 } 1641 1642 /// Most numbers are ordered naturally. 1643 @safe unittest 1644 { 1645 assert(cmp(-double.infinity, -double.max) < 0); 1646 assert(cmp(-double.max, -100.0) < 0); 1647 assert(cmp(-100.0, -0.5) < 0); 1648 assert(cmp(-0.5, 0.0) < 0); 1649 assert(cmp(0.0, 0.5) < 0); 1650 assert(cmp(0.5, 100.0) < 0); 1651 assert(cmp(100.0, double.max) < 0); 1652 assert(cmp(double.max, double.infinity) < 0); 1653 1654 assert(cmp(1.0, 1.0) == 0); 1655 } 1656 1657 /// Positive and negative zeroes are distinct. 1658 @safe unittest 1659 { 1660 assert(cmp(-0.0, +0.0) < 0); 1661 assert(cmp(+0.0, -0.0) > 0); 1662 } 1663 1664 /// Depending on the sign, $(NAN)s go to either end of the spectrum. 1665 @safe unittest 1666 { 1667 assert(cmp(-double.nan, -double.infinity) < 0); 1668 assert(cmp(double.infinity, double.nan) < 0); 1669 assert(cmp(-double.nan, double.nan) < 0); 1670 } 1671 1672 /// $(NAN)s of the same sign are ordered by the payload. 1673 @safe unittest 1674 { 1675 assert(cmp(NaN(10), NaN(20)) < 0); 1676 assert(cmp(-NaN(20), -NaN(10)) < 0); 1677 } 1678 1679 @safe unittest 1680 { 1681 import std.meta : AliasSeq; 1682 static foreach (T; AliasSeq!(float, double, real)) 1683 {{ 1684 T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity, 1685 -T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown, 1686 T(-1.0), T(-1.0).nextUp, 1687 T(-0.5), -T.min_normal, (-T.min_normal).nextUp, 1688 -2 * T.min_normal * T.epsilon, 1689 -T.min_normal * T.epsilon, 1690 T(-0.0), T(0.0), 1691 T.min_normal * T.epsilon, 1692 2 * T.min_normal * T.epsilon, 1693 T.min_normal.nextDown, T.min_normal, T(0.5), 1694 T(1.0).nextDown, T(1.0), 1695 T(1.0).nextUp, T(16.0), T.max / 2, T.max, 1696 T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)]; 1697 1698 foreach (i, x; values) 1699 { 1700 foreach (y; values[i + 1 .. $]) 1701 { 1702 assert(cmp(x, y) < 0); 1703 assert(cmp(y, x) > 0); 1704 } 1705 assert(cmp(x, x) == 0); 1706 } 1707 }} 1708 } 1709 1710 package(std): // not yet public 1711 1712 struct FloatingPointBitpattern(T) 1713 if (isFloatingPoint!T) 1714 { 1715 static if (T.mant_dig <= 64) 1716 { 1717 ulong mantissa; 1718 } 1719 else 1720 { 1721 ulong mantissa_lsb; 1722 ulong mantissa_msb; 1723 } 1724 1725 int exponent; 1726 bool negative; 1727 } 1728 1729 FloatingPointBitpattern!T extractBitpattern(T)(const(T) value) @trusted 1730 if (isFloatingPoint!T) 1731 { 1732 import std.math.traits : floatTraits, RealFormat; 1733 1734 T val = value; 1735 FloatingPointBitpattern!T ret; 1736 1737 alias F = floatTraits!T; 1738 static if (F.realFormat == RealFormat.ieeeExtended) 1739 { 1740 if (__ctfe) 1741 { 1742 import core.math : fabs, ldexp; 1743 import std.math.rounding : floor; 1744 import std.math.traits : isInfinity, isNaN, signbit; 1745 import std.math.exponential : log2; 1746 1747 if (isNaN(val) || isInfinity(val)) 1748 ret.exponent = 32767; 1749 else if (fabs(val) < real.min_normal) 1750 ret.exponent = 0; 1751 else if (fabs(val) >= nextUp(real.max / 2)) 1752 ret.exponent = 32766; 1753 else 1754 ret.exponent = cast(int) (val.fabs.log2.floor() + 16383); 1755 1756 if (ret.exponent == 32767) 1757 { 1758 // NaN or infinity 1759 ret.mantissa = isNaN(val) ? ((1L << 63) - 1) : 0; 1760 } 1761 else 1762 { 1763 auto delta = 16382 + 64 // bias + bits of ulong 1764 - (ret.exponent == 0 ? 1 : ret.exponent); // -1 in case of subnormals 1765 val = ldexp(val, delta); // val *= 2^^delta 1766 1767 ulong tmp = cast(ulong) fabs(val); 1768 if (ret.exponent != 32767 && ret.exponent > 0 && tmp <= ulong.max / 2) 1769 { 1770 // correction, due to log2(val) being rounded up: 1771 ret.exponent--; 1772 val *= 2; 1773 tmp = cast(ulong) fabs(val); 1774 } 1775 1776 ret.mantissa = tmp & long.max; 1777 } 1778 1779 ret.negative = (signbit(val) == 1); 1780 } 1781 else 1782 { 1783 ushort* vs = cast(ushort*) &val; 1784 ret.mantissa = (cast(ulong*) vs)[0] & long.max; 1785 ret.exponent = vs[4] & short.max; 1786 ret.negative = (vs[4] >> 15) & 1; 1787 } 1788 } 1789 else 1790 { 1791 static if (F.realFormat == RealFormat.ieeeSingle) 1792 { 1793 ulong ival = *cast(uint*) &val; 1794 } 1795 else static if (F.realFormat == RealFormat.ieeeDouble) 1796 { 1797 ulong ival = *cast(ulong*) &val; 1798 } 1799 else 1800 { 1801 static assert(false, "Floating point type `" ~ F.realFormat ~ "` not supported."); 1802 } 1803 1804 import std.math.exponential : log2; 1805 enum log2_max_exp = cast(int) log2(T(T.max_exp)); 1806 1807 ret.mantissa = ival & ((1L << (T.mant_dig - 1)) - 1); 1808 ret.exponent = (ival >> (T.mant_dig - 1)) & ((1L << (log2_max_exp + 1)) - 1); 1809 ret.negative = (ival >> (T.mant_dig + log2_max_exp)) & 1; 1810 } 1811 1812 // add leading 1 for normalized values and correct exponent for denormalied values 1813 if (ret.exponent != 0 && ret.exponent != 2 * T.max_exp - 1) 1814 ret.mantissa |= 1L << (T.mant_dig - 1); 1815 else if (ret.exponent == 0) 1816 ret.exponent = 1; 1817 1818 ret.exponent -= T.max_exp - 1; 1819 1820 return ret; 1821 } 1822 1823 @safe pure unittest 1824 { 1825 float f = 1.0f; 1826 auto bp = extractBitpattern(f); 1827 assert(bp.mantissa == 0x80_0000); 1828 assert(bp.exponent == 0); 1829 assert(bp.negative == false); 1830 1831 f = float.max; 1832 bp = extractBitpattern(f); 1833 assert(bp.mantissa == 0xff_ffff); 1834 assert(bp.exponent == 127); 1835 assert(bp.negative == false); 1836 1837 f = -1.5432e-17f; 1838 bp = extractBitpattern(f); 1839 assert(bp.mantissa == 0x8e_55c8); 1840 assert(bp.exponent == -56); 1841 assert(bp.negative == true); 1842 1843 // using double literal due to https://issues.dlang.org/show_bug.cgi?id=20361 1844 f = 2.3822073893521890206e-44; 1845 bp = extractBitpattern(f); 1846 assert(bp.mantissa == 0x00_0011); 1847 assert(bp.exponent == -126); 1848 assert(bp.negative == false); 1849 1850 f = -float.infinity; 1851 bp = extractBitpattern(f); 1852 assert(bp.mantissa == 0); 1853 assert(bp.exponent == 128); 1854 assert(bp.negative == true); 1855 1856 f = float.nan; 1857 bp = extractBitpattern(f); 1858 assert(bp.mantissa != 0); // we don't guarantee payloads 1859 assert(bp.exponent == 128); 1860 assert(bp.negative == false); 1861 } 1862 1863 @safe pure unittest 1864 { 1865 double d = 1.0; 1866 auto bp = extractBitpattern(d); 1867 assert(bp.mantissa == 0x10_0000_0000_0000L); 1868 assert(bp.exponent == 0); 1869 assert(bp.negative == false); 1870 1871 d = double.max; 1872 bp = extractBitpattern(d); 1873 assert(bp.mantissa == 0x1f_ffff_ffff_ffffL); 1874 assert(bp.exponent == 1023); 1875 assert(bp.negative == false); 1876 1877 d = -1.5432e-222; 1878 bp = extractBitpattern(d); 1879 assert(bp.mantissa == 0x11_d9b6_a401_3b04L); 1880 assert(bp.exponent == -737); 1881 assert(bp.negative == true); 1882 1883 d = 0.0.nextUp; 1884 bp = extractBitpattern(d); 1885 assert(bp.mantissa == 0x00_0000_0000_0001L); 1886 assert(bp.exponent == -1022); 1887 assert(bp.negative == false); 1888 1889 d = -double.infinity; 1890 bp = extractBitpattern(d); 1891 assert(bp.mantissa == 0); 1892 assert(bp.exponent == 1024); 1893 assert(bp.negative == true); 1894 1895 d = double.nan; 1896 bp = extractBitpattern(d); 1897 assert(bp.mantissa != 0); // we don't guarantee payloads 1898 assert(bp.exponent == 1024); 1899 assert(bp.negative == false); 1900 } 1901 1902 @safe pure unittest 1903 { 1904 import std.math.traits : floatTraits, RealFormat; 1905 1906 alias F = floatTraits!real; 1907 static if (F.realFormat == RealFormat.ieeeExtended) 1908 { 1909 real r = 1.0L; 1910 auto bp = extractBitpattern(r); 1911 assert(bp.mantissa == 0x8000_0000_0000_0000L); 1912 assert(bp.exponent == 0); 1913 assert(bp.negative == false); 1914 1915 r = real.max; 1916 bp = extractBitpattern(r); 1917 assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); 1918 assert(bp.exponent == 16383); 1919 assert(bp.negative == false); 1920 1921 r = -1.5432e-3333L; 1922 bp = extractBitpattern(r); 1923 assert(bp.mantissa == 0xc768_a2c7_a616_cc22L); 1924 assert(bp.exponent == -11072); 1925 assert(bp.negative == true); 1926 1927 r = 0.0L.nextUp; 1928 bp = extractBitpattern(r); 1929 assert(bp.mantissa == 0x0000_0000_0000_0001L); 1930 assert(bp.exponent == -16382); 1931 assert(bp.negative == false); 1932 1933 r = -float.infinity; 1934 bp = extractBitpattern(r); 1935 assert(bp.mantissa == 0); 1936 assert(bp.exponent == 16384); 1937 assert(bp.negative == true); 1938 1939 r = float.nan; 1940 bp = extractBitpattern(r); 1941 assert(bp.mantissa != 0); // we don't guarantee payloads 1942 assert(bp.exponent == 16384); 1943 assert(bp.negative == false); 1944 1945 r = nextDown(0x1p+16383L); 1946 bp = extractBitpattern(r); 1947 assert(bp.mantissa == 0xffff_ffff_ffff_ffffL); 1948 assert(bp.exponent == 16382); 1949 assert(bp.negative == false); 1950 } 1951 } 1952 1953 @safe pure unittest 1954 { 1955 import std.math.traits : floatTraits, RealFormat; 1956 import std.math.exponential : log2; 1957 1958 alias F = floatTraits!real; 1959 1960 static if (F.realFormat == RealFormat.ieeeExtended) 1961 { 1962 // log2 is broken for x87-reals on some computers in CTFE 1963 // the following test excludes these computers from the test 1964 // (https://issues.dlang.org/show_bug.cgi?id=21757) 1965 enum test = cast(int) log2(3.05e2312L); 1966 static if (test == 7681) 1967 { 1968 enum r1 = 1.0L; 1969 enum bp1 = extractBitpattern(r1); 1970 static assert(bp1.mantissa == 0x8000_0000_0000_0000L); 1971 static assert(bp1.exponent == 0); 1972 static assert(bp1.negative == false); 1973 1974 enum r2 = real.max; 1975 enum bp2 = extractBitpattern(r2); 1976 static assert(bp2.mantissa == 0xffff_ffff_ffff_ffffL); 1977 static assert(bp2.exponent == 16383); 1978 static assert(bp2.negative == false); 1979 1980 enum r3 = -1.5432e-3333L; 1981 enum bp3 = extractBitpattern(r3); 1982 static assert(bp3.mantissa == 0xc768_a2c7_a616_cc22L); 1983 static assert(bp3.exponent == -11072); 1984 static assert(bp3.negative == true); 1985 1986 enum r4 = 0.0L.nextUp; 1987 enum bp4 = extractBitpattern(r4); 1988 static assert(bp4.mantissa == 0x0000_0000_0000_0001L); 1989 static assert(bp4.exponent == -16382); 1990 static assert(bp4.negative == false); 1991 1992 enum r5 = -real.infinity; 1993 enum bp5 = extractBitpattern(r5); 1994 static assert(bp5.mantissa == 0); 1995 static assert(bp5.exponent == 16384); 1996 static assert(bp5.negative == true); 1997 1998 enum r6 = real.nan; 1999 enum bp6 = extractBitpattern(r6); 2000 static assert(bp6.mantissa != 0); // we don't guarantee payloads 2001 static assert(bp6.exponent == 16384); 2002 static assert(bp6.negative == false); 2003 2004 enum r7 = nextDown(0x1p+16383L); 2005 enum bp7 = extractBitpattern(r7); 2006 static assert(bp7.mantissa == 0xffff_ffff_ffff_ffffL); 2007 static assert(bp7.exponent == 16382); 2008 static assert(bp7.negative == false); 2009 } 2010 } 2011 }